AI Agent Development Guide

Learn to build powerful AI agents for specific tasks

Advanced Agent Monitoring Techniques

Comprehensive strategies to observe, analyze, and optimize your AI agent's performance

Introduction to AI Agent Monitoring

Effective monitoring is crucial for maintaining reliable, high-performing AI agents in production environments. While basic monitoring covers uptime and error rates, advanced monitoring techniques provide deeper insights into agent behavior, performance patterns, and potential areas for improvement.

Why Advanced Monitoring Matters

  • Performance optimization: Identify bottlenecks and inefficiencies
  • Cost management: Track token usage and optimize expensive operations
  • Quality assurance: Ensure responses meet quality benchmarks
  • Security oversight: Detect unusual patterns that may indicate misuse
  • User experience: Monitor satisfaction metrics and response relevance

Building a Comprehensive Monitoring Strategy

An effective monitoring strategy should address multiple aspects of your AI agent's operation, from technical performance to user satisfaction.

The Monitoring Pyramid

  • Level 1: Infrastructure Monitoring - System health, resource utilization
  • Level 2: Application Monitoring - API performance, error rates, latency
  • Level 3: AI-Specific Monitoring - Token usage, model performance, hallucination detection
  • Level 4: Business Impact Monitoring - User satisfaction, task completion rates, ROI

Monitoring Strategy Template

{
  "monitoring_strategy": {
    "infrastructure": {
      "metrics": ["CPU utilization", "memory usage", "disk I/O", "network throughput"],
      "tools": ["Prometheus", "Grafana", "CloudWatch"],
      "alert_thresholds": {
        "cpu_utilization": "> 80% for 5 minutes",
        "memory_usage": "> 85% for 5 minutes"
      }
    },
    "application": {
      "metrics": ["request rate", "error rate", "latency", "throughput"],
      "tools": ["OpenTelemetry", "Datadog", "New Relic"],
      "alert_thresholds": {
        "error_rate": "> 1% for 5 minutes",
        "p95_latency": "> 2000ms for 10 minutes"
      }
    },
    "ai_specific": {
      "metrics": ["token usage", "prompt engineering effectiveness", "hallucination rate"],
      "tools": ["Custom dashboards", "LangSmith", "LLM evaluation frameworks"],
      "alert_thresholds": {
        "token_cost_per_session": "> $0.05 average over 1 hour",
        "hallucination_rate": "> 5% of responses"
      }
    },
    "business_impact": {
      "metrics": ["user satisfaction", "task completion rate", "agent adoption"],
      "tools": ["Feedback analysis", "A/B testing", "User analytics"],
      "alert_thresholds": {
        "user_satisfaction": "< 4.0/5.0 over 24 hours",
        "task_completion": "< 80% over 24 hours"
      }
    }
  }
}

Technical Performance Monitoring

Tracking the technical aspects of your AI agent ensures it operates efficiently and reliably.

Key Technical Metrics

  • Latency: Response time from request to completion
  • Throughput: Number of requests processed per unit time
  • Error rates: Percentage of failed requests
  • Resource utilization: CPU, memory, and network usage
  • Concurrency: Number of simultaneous requests being handled

Implementing Distributed Tracing

Distributed tracing helps identify performance bottlenecks across your entire AI agent system.

# Using OpenTelemetry for distributed tracing
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor

# Configure the tracer
resource = Resource(attributes={SERVICE_NAME: "ai-agent-service"})
tracer_provider = TracerProvider(resource=resource)
otlp_exporter = OTLPSpanExporter(endpoint="otel-collector:4317", insecure=True)
span_processor = BatchSpanProcessor(otlp_exporter)
tracer_provider.add_span_processor(span_processor)
trace.set_tracer_provider(tracer_provider)

# Get a tracer
tracer = trace.get_tracer(__name__)

# Example of tracing a function
def process_user_query(query, user_id):
    with tracer.start_as_current_span("process_user_query") as span:
        # Add relevant attributes to the span
        span.set_attribute("user.id", user_id)
        span.set_attribute("query.length", len(query))
        
        # Trace the preprocessing step
        with tracer.start_as_current_span("preprocess_query"):
            processed_query = preprocess(query)
            
        # Trace the agent execution
        with tracer.start_as_current_span("execute_agent"):
            response = agent.run(processed_query)
            span.set_attribute("response.length", len(response))
            
        # Trace the postprocessing step
        with tracer.start_as_current_span("postprocess_response"):
            final_response = postprocess(response)
            
        return final_response

Real-Time Performance Dashboards

Create comprehensive dashboards to visualize system performance in real-time.

Grafana Dashboard Configuration (Prometheus Data Source)

{
  "annotations": {
    "list": [
      {
        "builtIn": 1,
        "datasource": "-- Grafana --",
        "enable": true,
        "hide": true,
        "iconColor": "rgba(0, 211, 255, 1)",
        "name": "Annotations & Alerts",
        "type": "dashboard"
      }
    ]
  },
  "editable": true,
  "gnetId": null,
  "graphTooltip": 0,
  "id": 1,
  "links": [],
  "panels": [
    {
      "aliasColors": {},
      "bars": false,
      "dashLength": 10,
      "dashes": false,
      "datasource": "Prometheus",
      "fieldConfig": {
        "defaults": {}
      },
      "fill": 1,
      "fillGradient": 0,
      "gridPos": {
        "h": 8,
        "w": 12,
        "x": 0,
        "y": 0
      },
      "hiddenSeries": false,
      "id": 2,
      "legend": {
        "avg": false,
        "current": false,
        "max": false,
        "min": false,
        "show": true,
        "total": false,
        "values": false
      },
      "lines": true,
      "linewidth": 1,
      "nullPointMode": "null",
      "options": {
        "dataLinks": []
      },
      "percentage": false,
      "pointradius": 2,
      "points": false,
      "renderer": "flot",
      "seriesOverrides": [],
      "spaceLength": 10,
      "stack": false,
      "steppedLine": false,
      "targets": [
        {
          "expr": "rate(ai_agent_requests_total[5m])",
          "interval": "",
          "legendFormat": "",
          "refId": "A"
        }
      ],
      "thresholds": [],
      "timeFrom": null,
      "timeRegions": [],
      "timeShift": null,
      "title": "Request Rate (5m)",
      "tooltip": {
        "shared": true,
        "sort": 0,
        "value_type": "individual"
      },
      "type": "graph",
      "xaxis": {
        "buckets": null,
        "mode": "time",
        "name": null,
        "show": true,
        "values": []
      },
      "yaxes": [
        {
          "format": "short",
          "label": null,
          "logBase": 1,
          "max": null,
          "min": null,
          "show": true
        },
        {
          "format": "short",
          "label": null,
          "logBase": 1,
          "max": null,
          "min": null,
          "show": true
        }
      ],
      "yaxis": {
        "align": false,
        "alignLevel": null
      }
    }
  ],
  "schemaVersion": 22,
  "style": "dark",
  "tags": [],
  "templating": {
    "list": []
  },
  "time": {
    "from": "now-6h",
    "to": "now"
  },
  "timepicker": {},
  "timezone": "",
  "title": "AI Agent Performance",
  "uid": "ai-agent-performance",
  "variables": {
    "list": []
  },
  "version": 1
}

LLM-Specific Monitoring

Monitor aspects unique to LLM-based agents, such as token usage, prompt effectiveness, and response quality.

Token Usage Tracking

Keep track of token consumption to manage costs and optimize prompts.

# Using a middleware approach to track token usage
import time
import tiktoken
from prometheus_client import Counter, Histogram

# Set up metrics
TOKENS_COUNTER = Counter('llm_tokens_total', 'Total tokens used', ['model', 'type'])
TOKENS_COST_COUNTER = Counter('llm_tokens_cost_total', 'Total cost of tokens used', ['model'])
LATENCY_HISTOGRAM = Histogram('llm_request_duration_seconds', 'Time spent processing LLM requests', ['model'])

# Initialize tokenizer
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")

class TokenUsageMiddleware:
    def __init__(self, llm_client):
        self.llm_client = llm_client
        self.price_per_1k_tokens = {
            "gpt-3.5-turbo": {"input": 0.0015, "output": 0.002},
            "gpt-4": {"input": 0.03, "output": 0.06},
            # Add other models as needed
        }
    
    def count_tokens(self, text):
        """Count the number of tokens in the text"""
        tokens = encoding.encode(text)
        return len(tokens)
    
    def calculate_cost(self, model, input_tokens, output_tokens):
        """Calculate the cost based on token usage"""
        if model not in self.price_per_1k_tokens:
            return 0
        
        input_cost = (input_tokens / 1000) * self.price_per_1k_tokens[model]["input"]
        output_cost = (output_tokens / 1000) * self.price_per_1k_tokens[model]["output"]
        return input_cost + output_cost
    
    def completion(self, prompt, model="gpt-3.5-turbo", **kwargs):
        """Wrapper around the LLM completion call with token tracking"""
        input_tokens = self.count_tokens(prompt)
        TOKENS_COUNTER.labels(model=model, type="input").inc(input_tokens)
        
        start_time = time.time()
        response = self.llm_client.completion(prompt, model=model, **kwargs)
        duration = time.time() - start_time
        LATENCY_HISTOGRAM.labels(model=model).observe(duration)
        
        output_tokens = self.count_tokens(response.text)
        TOKENS_COUNTER.labels(model=model, type="output").inc(output_tokens)
        
        cost = self.calculate_cost(model, input_tokens, output_tokens)
        TOKENS_COST_COUNTER.labels(model=model).inc(cost)
        
        # Add metadata to response
        response.metadata = {
            "input_tokens": input_tokens,
            "output_tokens": output_tokens,
            "total_tokens": input_tokens + output_tokens,
            "cost": cost,
            "duration": duration
        }
        
        return response

Evaluating Response Quality

Implement automated evaluation of agent response quality using LLM-based judges or heuristic approaches.

# A simple evaluator for response quality
import json
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI

class ResponseEvaluator:
    def __init__(self):
        self.evaluation_llm = OpenAI(model_name="gpt-4", temperature=0)
        self.evaluation_prompt = PromptTemplate(
            input_variables=["query", "response", "criteria"],
            template="""Evaluate the quality of the following AI assistant response based on the given criteria.

USER QUERY: {query}

AI RESPONSE: {response}

EVALUATION CRITERIA:
{criteria}

Provide a score from 1-10 for each criterion and a brief explanation. Then give an overall score.
Return your evaluation as a JSON object with the following structure:
{{
  "criteria_scores": {{
    "criterion_name": {{
      "score": numeric_score,
      "explanation": "explanation"
    }},
    ...
  }},
  "overall_score": numeric_score,
  "summary": "brief summary of strengths and weaknesses"
}}"""
        )
        
        # Default evaluation criteria
        self.default_criteria = """
1. Accuracy: Does the response correctly answer the question or fulfill the request?
2. Completeness: Does the response address all aspects of the query?
3. Relevance: Is the response directly related to the query without unnecessary information?
4. Clarity: Is the response clear, well-organized, and easy to understand?
5. Helpfulness: Does the response provide practical value to the user?
"""

    def evaluate(self, query, response, criteria=None):
        """Evaluate the quality of an agent response"""
        eval_criteria = criteria if criteria else self.default_criteria
        
        prompt = self.evaluation_prompt.format(
            query=query,
            response=response,
            criteria=eval_criteria
        )
        
        result = self.evaluation_llm(prompt)
        
        try:
            evaluation = json.loads(result)
            return evaluation
        except json.JSONDecodeError:
            # Fallback if evaluation LLM doesn't return valid JSON
            return {
                "error": "Failed to parse evaluation",
                "raw_evaluation": result,
                "overall_score": 0
            }

Detecting Hallucinations

Implement systems to detect when your agent generates incorrect or fabricated information.

Hallucination Detection Strategy

A multi-layered approach to identifying potential hallucinations:

  1. Knowledge Grounding: Compare responses against known facts or trusted data sources
  2. Confidence Scoring: Have the LLM self-assess confidence in different parts of its response
  3. Consistency Checking: Test if the same query produces consistent answers over multiple runs
  4. Entity Verification: Validate that mentioned entities (people, places, dates) actually exist
# Example implementation of a hallucination detection system
from typing import List, Dict, Any
import re
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification

class HallucinationDetector:
    def __init__(self):
        # Load verification model (e.g., a model fine-tuned to detect factual consistency)
        self.tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
        self.model = AutoModelForSequenceClassification.from_pretrained("path/to/factual_consistency_model")
        
        # Knowledge base connection would be implemented here
        self.knowledge_base = None
        
    def extract_claims(self, text: str) -> List[str]:
        """Extract factual claims from text"""
        # This is a simplified implementation
        # In practice, you would use a more sophisticated approach
        sentences = re.split(r'(?<=[.!?])\s+', text)
        return [s for s in sentences if self._is_factual_claim(s)]
    
    def _is_factual_claim(self, sentence: str) -> bool:
        """Determine if a sentence makes a factual claim"""
        # Simple heuristic - could be replaced with a classifier
        factual_indicators = ["is", "was", "are", "were", "has", "have", "had"]
        return any(indicator in sentence.lower().split() for indicator in factual_indicators)
    
    def verify_claim(self, claim: str) -> Dict[str, Any]:
        """Verify a single claim against knowledge sources"""
        # Check against knowledge base
        # This would typically involve semantic search or other verification
        
        # Use the model to assess factual consistency
        inputs = self.tokenizer(claim, return_tensors="pt")
        outputs = self.model(**inputs)
        score = outputs.logits.softmax(dim=1)[0, 1].item()  # Assuming binary classification
        
        return {
            "claim": claim,
            "confidence_score": score,
            "verified": score > 0.7  # Threshold can be adjusted
        }
    
    def evaluate_response(self, response: str) -> Dict[str, Any]:
        """Evaluate an entire response for potential hallucinations"""
        claims = self.extract_claims(response)
        verifications = [self.verify_claim(claim) for claim in claims]
        
        # Calculate overall hallucination score
        if verifications:
            overall_score = np.mean([v["confidence_score"] for v in verifications])
        else:
            overall_score = 1.0  # No claims to verify
            
        return {
            "hallucination_score": 1 - overall_score,  # Higher means more likely to contain hallucinations
            "verified_claims": sum(1 for v in verifications if v["verified"]),
            "total_claims": len(verifications),
            "claim_details": verifications
        }

User Interaction Monitoring

Track and analyze how users interact with your agent to improve user experience and agent effectiveness.

Key User Interaction Metrics

  • Task completion rate: Percentage of user queries successfully resolved
  • Conversation length: Number of turns required to complete a task
  • Clarification requests: How often the agent needs to ask for clarification
  • User satisfaction: Explicit feedback ratings or implicit satisfaction signals
  • User retention: How frequently users return to use the agent

Implementing User Feedback Collection

// Frontend implementation of user feedback collection
const FeedbackComponent = () => {
  const [feedback, setFeedback] = useState(null);
  const [comment, setComment] = useState('');
  const [submitted, setSubmitted] = useState(false);
  const [conversationId, setConversationId] = useState(props.conversationId);

  const submitFeedback = async () => {
    try {
      const response = await fetch('/api/feedback', {
        method: 'POST',
        headers: {
          'Content-Type': 'application/json',
        },
        body: JSON.stringify({
          conversationId,
          rating: feedback,
          comment,
          timestamp: new Date().toISOString(),
        }),
      });
      
      if (response.ok) {
        setSubmitted(true);
      }
    } catch (error) {
      console.error('Error submitting feedback:', error);
    }
  };

  if (submitted) {
    return 
Thank you for your feedback!
; } return ( <div className="feedback-container"> <h4>Was this response helpful?</h4> <div className="rating-buttons"> <button className={`rating-button ${feedback === 'positive' ? 'active' : ''}`} onClick={() => setFeedback('positive')} > 👍 Yes </button> <button className={`rating-button ${feedback === 'negative' ? 'active' : ''}`} onClick={() => setFeedback('negative')} > 👎 No </button> </div> {feedback && ( <> <textarea placeholder="Tell us more about your experience (optional)" value={comment} onChange={(e) => setComment(e.target.value)} rows={3} /> <button className="submit-button" onClick={submitFeedback}> Submit Feedback </button> </> )} </div> ); };

Conversation Flow Analysis

Track and analyze conversation patterns to identify common user journeys and pain points.

Conversation Flow Tracking Schema

{
  "conversation_analytics": {
    "conversation_id": "conv_123456789",
    "user_id": "usr_987654321",
    "start_time": "2023-11-10T14:30:05Z",
    "end_time": "2023-11-10T14:35:22Z",
    "duration_seconds": 317,
    "total_turns": 7,
    "user_turns": 4,
    "agent_turns": 3,
    "initial_intent": "technical_support",
    "final_intent": "technical_support",
    "intent_shifts": 0,
    "task_completed": true,
    "completion_confidence": 0.92,
    "user_satisfaction": 4.5,
    "interactions": [
      {
        "turn_id": 1,
        "speaker": "user",
        "intent": "technical_support",
        "content_length": 145,
        "sentiment": "frustrated",
        "timestamp": "2023-11-10T14:30:05Z"
      },
      {
        "turn_id": 2,
        "speaker": "agent",
        "response_type": "clarification",
        "content_length": 89,
        "response_time_ms": 450,
        "timestamp": "2023-11-10T14:30:12Z"
      },
      {
        "turn_id": 3,
        "speaker": "user",
        "intent": "technical_support",
        "content_length": 56,
        "sentiment": "neutral",
        "timestamp": "2023-11-10T14:31:05Z"
      },
      {
        "turn_id": 4,
        "speaker": "agent",
        "response_type": "solution_proposal",
        "content_length": 302,
        "response_time_ms": 1250,
        "timestamp": "2023-11-10T14:31:25Z"
      },
      {
        "turn_id": 5,
        "speaker": "user",
        "intent": "clarification",
        "content_length": 28,
        "sentiment": "neutral",
        "timestamp": "2023-11-10T14:32:45Z"
      },
      {
        "turn_id": 6,
        "speaker": "agent",
        "response_type": "clarification",
        "content_length": 215,
        "response_time_ms": 875,
        "timestamp": "2023-11-10T14:33:05Z"
      },
      {
        "turn_id": 7,
        "speaker": "user",
        "intent": "confirmation",
        "content_length": 15,
        "sentiment": "positive",
        "timestamp": "2023-11-10T14:35:22Z"
      }
    ]
  }
}

Setting Up Alerting Systems

Establish proactive alerting to quickly identify and respond to issues with your AI agent.

Multi-tiered Alert Structure

  • Info alerts: Informational notices that don't require immediate action
  • Warning alerts: Potential issues that should be investigated soon
  • Critical alerts: Serious problems requiring immediate attention

Implementing Alert Rules

# Prometheus Alerting Rules Example
groups:
- name: ai_agent_alerts
  rules:
  - alert: HighErrorRate
    expr: rate(ai_agent_errors_total[5m]) / rate(ai_agent_requests_total[5m]) > 0.05
    for: 2m
    labels:
      severity: critical
    annotations:
      summary: "High error rate detected"
      description: "Error rate is above 5% for the past 2 minutes"
      
  - alert: SlowResponseTime
    expr: histogram_quantile(0.95, rate(ai_agent_response_time_seconds_bucket[5m])) > 5
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Slow response times detected"
      description: "95th percentile response time is above 5 seconds for the past 5 minutes"
      
  - alert: HighTokenUsage
    expr: increase(ai_agent_token_usage_total[1h]) > 1000000
    labels:
      severity: warning
    annotations:
      summary: "High token usage detected"
      description: "More than 1M tokens used in the past hour"
      
  - alert: LowUserSatisfaction
    expr: avg_over_time(ai_agent_user_satisfaction[1d]) < 3.5
    for: 6h
    labels:
      severity: warning
    annotations:
      summary: "Low user satisfaction scores"
      description: "Average user satisfaction below 3.5/5 for the past 6 hours"
      
  - alert: HighHallucinationRate
      expr: avg(ai_agent_hallucination_rate) > 0.08
      for: 30m
      labels:
        severity: critical
      annotations:
        summary: "High hallucination rate detected"
        description: "Agent hallucination rate above 8% for the past 30 minutes"

Alert Routing and Escalation

Define clear paths for alerts to reach the right team members and escalate when necessary.

Alert Routing Configuration

# PagerDuty-style alert routing configuration
routing_rules:
  # Infrastructure alerts
  - match:
      service: ai-agent-infra
      severity: critical
    target:
      team: infrastructure
      escalation_policy: infra-critical
      
  # Application alerts
  - match:
      service: ai-agent-app
      severity: critical
    target:
      team: engineering
      escalation_policy: eng-critical
      
  # AI-specific alerts
  - match:
      service: ai-agent-model
    target:
      team: ai-research
      escalation_policy: ai-standard
      
  # Business impact alerts
  - match:
      service: ai-agent-business
    target:
      team: product
      escalation_policy: product-standard

escalation_policies:
  - name: infra-critical
    steps:
      - wait: 5m
        notify: [primary-on-call]
      - wait: 15m
        notify: [secondary-on-call]
      - wait: 30m
        notify: [engineering-manager]
        
  - name: eng-critical
    steps:
      - wait: 10m
        notify: [engineering-on-call]
      - wait: 20m
        notify: [engineering-manager]
      - wait: 60m
        notify: [cto]

Building an LLM Evaluation Framework

Develop a systematic approach to evaluate your agent's performance against benchmarks and business goals.

Evaluation Categories

  • Technical performance: How efficiently the agent processes requests
  • Task completion: How successfully the agent achieves its assigned tasks
  • Output quality: How accurate, relevant, and coherent the agent's responses are
  • Safety compliance: How well the agent adheres to safety guidelines
  • Business impact: How effectively the agent contributes to business goals

Implementing an Evaluation Pipeline

# Comprehensive agent evaluation framework
import json
import pandas as pd
from typing import List, Dict, Any, Optional
from dataclasses import dataclass

@dataclass
class EvaluationResult:
    category: str
    metric_name: str
    score: float
    benchmark: float
    pass_fail: bool
    details: Optional[Dict[str, Any]] = None

class AgentEvaluator:
    def __init__(self, benchmarks_path: str):
        # Load benchmarks from configuration
        with open(benchmarks_path, 'r') as f:
            self.benchmarks = json.load(f)
        
        # Initialize evaluators for different categories
        self.evaluators = {
            "technical": self._evaluate_technical_performance,
            "task_completion": self._evaluate_task_completion,
            "output_quality": self._evaluate_output_quality,
            "safety": self._evaluate_safety_compliance,
            "business_impact": self._evaluate_business_impact
        }
    
    def evaluate_agent(self, agent_id: str, evaluation_data: Dict[str, Any]) -> List[EvaluationResult]:
        """Run comprehensive evaluation of an agent"""
        results = []
        
        # Run evaluations for each category
        for category, evaluator_func in self.evaluators.items():
            category_results = evaluator_func(evaluation_data)
            results.extend(category_results)
        
        return results
    
    def _evaluate_technical_performance(self, data: Dict[str, Any]) -> List[EvaluationResult]:
        """Evaluate technical performance metrics"""
        results = []
        tech_metrics = self.benchmarks["technical"]
        
        # Latency evaluation
        avg_latency = data["technical"]["average_latency"]
        latency_benchmark = tech_metrics["latency"]["threshold"]
        results.append(EvaluationResult(
            category="technical",
            metric_name="average_latency",
            score=avg_latency,
            benchmark=latency_benchmark,
            pass_fail=avg_latency <= latency_benchmark,
            details={"unit": "seconds", "samples": data["technical"]["latency_samples"]}
        ))
        
        # Error rate evaluation
        error_rate = data["technical"]["error_rate"]
        error_benchmark = tech_metrics["error_rate"]["threshold"]
        results.append(EvaluationResult(
            category="technical",
            metric_name="error_rate",
            score=error_rate,
            benchmark=error_benchmark,
            pass_fail=error_rate <= error_benchmark,
            details={"total_requests": data["technical"]["total_requests"]}
        ))
        
        # Token efficiency
        tokens_per_task = data["technical"]["average_tokens_per_task"]
        token_benchmark = tech_metrics["tokens_per_task"]["threshold"]
        results.append(EvaluationResult(
            category="technical",
            metric_name="tokens_per_task",
            score=tokens_per_task,
            benchmark=token_benchmark,
            pass_fail=tokens_per_task <= token_benchmark
        ))
        
        return results
    
    def _evaluate_task_completion(self, data: Dict[str, Any]) -> List[EvaluationResult]:
        """Evaluate task completion metrics"""
        # Implementation would be similar to technical performance
        # but focused on task completion metrics
        return []
    
    def _evaluate_output_quality(self, data: Dict[str, Any]) -> List[EvaluationResult]:
        """Evaluate output quality metrics"""
        # Implementation for output quality metrics
        return []
    
    def _evaluate_safety_compliance(self, data: Dict[str, Any]) -> List[EvaluationResult]:
        """Evaluate safety compliance metrics"""
        # Implementation for safety metrics
        return []
    
    def _evaluate_business_impact(self, data: Dict[str, Any]) -> List[EvaluationResult]:
        """Evaluate business impact metrics"""
        # Implementation for business impact metrics
        return []
    
    def generate_evaluation_report(self, results: List[EvaluationResult]) -> Dict[str, Any]:
        """Generate a comprehensive evaluation report"""
        df = pd.DataFrame([
            {
                "category": r.category,
                "metric": r.metric_name,
                "score": r.score,
                "benchmark": r.benchmark,
                "status": "PASS" if r.pass_fail else "FAIL"
            }
            for r in results
        ])
        
        # Calculate summary statistics
        summary = {
            "total_metrics": len(results),
            "passed_metrics": sum(1 for r in results if r.pass_fail),
            "failed_metrics": sum(1 for r in results if not r.pass_fail),
            "pass_rate": sum(1 for r in results if r.pass_fail) / len(results) if results else 0,
            "categories": {
                category: {
                    "pass_rate": df[df["category"] == category]["status"].value_counts().get("PASS", 0) / len(df[df["category"] == category]) if len(df[df["category"] == category]) > 0 else 0
                }
                for category in df["category"].unique()
            }
        }
        
        return {
            "summary": summary,
            "details": [
                {
                    "category": r.category,
                    "metric": r.metric_name,
                    "score": r.score,
                    "benchmark": r.benchmark,
                    "status": "PASS" if r.pass_fail else "FAIL",
                    "details": r.details
                }
                for r in results
            ]
        }

Continuous Improvement Process

Establish a systematic approach to use monitoring data for ongoing agent improvements.

The Improvement Cycle

  1. Data Collection: Gather comprehensive monitoring data
  2. Analysis: Identify patterns, bottlenecks, and opportunities
  3. Prioritization: Determine highest-impact improvements
  4. Implementation: Make targeted changes to the agent
  5. Validation: Measure the impact of changes

A/B Testing Framework

Use controlled experiments to validate improvements before full deployment.

A/B Test Configuration

{
  "experiment": {
    "id": "prompt-optimization-test-001",
    "description": "Testing improved prompt engineering for customer service queries",
    "start_date": "2023-11-01T00:00:00Z",
    "end_date": "2023-11-15T23:59:59Z",
    "variants": [
      {
        "id": "control",
        "description": "Current production prompt",
        "traffic_allocation": 0.5,
        "configuration": {
          "prompt_template": "You are a helpful customer service agent...",
          "temperature": 0.7,
          "max_tokens": 500
        }
      },
      {
        "id": "test",
        "description": "Optimized prompt with better context",
        "traffic_allocation": 0.5,
        "configuration": {
          "prompt_template": "You are a customer service agent for ACME Corp...",
          "temperature": 0.7,
          "max_tokens": 500
        }
      }
    ],
    "metrics": {
      "primary": [
        {
          "name": "task_completion_rate",
          "description": "Percentage of customer issues resolved without escalation",
          "minimum_detectable_effect": 0.05
        }
      ],
      "secondary": [
        {
          "name": "user_satisfaction",
          "description": "Average user satisfaction score (1-5)"
        },
        {
          "name": "conversation_turns",
          "description": "Average number of turns to resolution"
        },
        {
          "name": "token_usage",
          "description": "Average tokens used per conversation"
        }
      ]
    },
    "segmentation": [
      "user_type",
      "issue_category",
      "platform"
    ]
  }
}

AI Agent Monitoring Checklist

Ensure your AI agent monitoring system covers these critical aspects before and after deployment:

Technical Monitoring Checklist

LLM-Specific Monitoring Checklist

User Experience Monitoring Checklist

Completion Progress:
0%

Ready to Implement Advanced Monitoring?

Apply these monitoring best practices to ensure your AI agent operates reliably and efficiently in production.

Return to Deployment Guide